Chapter 8: Current Electricity

1. Charge

- Charge is a property of matter that feels a force in an electromagnetic field.
- Two types: **Positive** (+) and **Negative** (-).
- SI Unit: Coulomb (C)
- Formula: $\mathbf{Q} = \pm \mathbf{ne}$ where $e = 1.6 \times 10^{-19} C$
- Non-conductors: Charges stay fixed (no flow).
- Conductors: Free electrons allow charge flow.

2. Current (I)

- **Definition**: Rate of flow of charge.
- Formula: I = Q/t
- SI Unit: Ampere (A)
 - $\rightarrow 1 A = 1 C/s$
- Measured by ammeter (series connection).

3. Potential & Potential Difference

- Potential (V): Work done per unit charge to move it from infinity.
 - \circ V = W/Q, Unit = Volt (V)
- **Potential Difference**: Work done to move charge between 2 points.
- Measured by voltmeter (parallel connection).

4. Resistance (R)

- Opposition to current flow in a conductor.
- R = V/I, Unit = **Ohm** (Ω)
- Depends on:
 - Material
 - Length $(R \propto l)$
 - Area ($R \propto 1/A$)
 - Temperature $(R \propto T)$

5. Ohm's Law

- V = IR (if T is constant)
- Graphs:
 - o **Straight line**: Ohmic conductors (e.g., metals)
 - o **Curve**: Non-ohmic (e.g., diode, LED)

6. Conductance & Resistivity

- Conductance (G): G = 1/R, Unit: Siemen (S)
- Resistivity (ρ): $R = \rho(l/A)$, Unit: $\Omega \cdot \mathbf{m}$
- Conductivity (σ): $\sigma = 1/\rho$, Unit: S/m

7. Choice of Wire Materials

- **Copper**: low resistance → wiring
- **Nichrome**: high resistance → heaters
- **Tungsten**: high melting pt \rightarrow bulb filament
- **Fuse**: lead-tin alloy → melts easily

8. Superconductors

- Zero resistance at very low temp.
- Ex: Mercury (<4.2K), Lead (<7.25K)

9. Electric Cell & EMF

- Converts chemical → electrical energy.
- EMF (ε): Potential difference without current.

$$\circ \quad \varepsilon = W/q = I(R + r)$$

- Terminal Voltage (V): V = IR
- Voltage drop (v): v = Ir
- Internal Resistance (r): Resistance inside the cell.

10. Resistor Combinations

- Series:
 - $R_s = R_1 + R_2 + R_3...$
 - o Same current, voltage divides
- Parallel:
 - $0 1/Rp = 1/R_1 + 1/R_2 + 1/R_3...$
 - o Same voltage, current divides

11. Electrical Energy & Power

- Work/Energy (W): $W = VIt = I^2Rt = V^2t/R$
- **Power (P)**: $P = W/t = VI = V^2/R = I^2R$
- Units:
 - o Power: Watt (W), kW, MW, GW
 - o Energy: Joule (J), kWh
 - \circ 1 kWh = 3.6 × 10⁶ J

12. Appliance Power Ratings

- Example: 100W–220V
 - \circ R = V²/P
 - \circ I = P/V

13. Household Consumption

- Energy (kWh) = Power (kW) \times Time (h)
- $Cost = Energy \times Rate per unit$

14. Heating Effect of Current

- **Joule's Law**: $H = I^2Rt$ (in joules)
- Converts electric energy to heat, light, or mechanical energy.

